2019 CSCE Annual Conference - Laval (Greater Montreal)

2019 CSCE Annual Conference - Laval (Greater Montreal) Conference

Durability Assessment using Integrated Quality Management Framework in P3 Infrastructure Projects

Return to Session

Mr. Venkata Vemana, TransEd Partners
Dr. Smitha Koduru, Veracity Engineering & Risk Consulting Services
Mr. Chris Gentile, City of Edmonton (Presenter)

In Public-Private-Partnership (P3) infrastructure projects, the financial and service-life success of the project depends on the anticipated performance of infrastructure over its life-cycle. The life-cycle performance of P3 infrastructure projects is measured in terms of reduced repair and maintenance costs, as well as short duration of down-time due to the maintenance activities. Therefore, the durability of the infrastructure elements becomes an important component of the P3 projects.

During the construction stage, occurrence of deficiencies is an expected part of the projects. Remedial actions for the construction deficiencies often focus on meeting the design intent while reducing the impacts to the construction costs and schedule. As the infrastructure elements are designed according to the current codes and standards, meeting the design intent would address the safety and serviceability requirements of the infrastructure elements as defined in those standards. However, the requirements for durability over the infrastructure life-cycle are not explicitly considered in the current design codes and standards. Therefore, the planning and execution of P3 infrastructure projects requires additional contractual and construction quality management aspects to assess the durability requirements.

Development of the construction quality management aspects that address the durability of the remedial actions due to a construction deficiency is not an easy task. While the life-cycle performance of the infrastructure elements, as designed, can be estimated based on the existing infrastructure, there is no research in to the life-cycle durability performance of the remedial actions. Furthermore, as the remedial actions often involve the use of latest repair products and procedures, it adds to the difficulty in predicting the durability of the repaired component.  In practice, not all construction deficiencies may result in the reduction of life-cycle durability. On the other hand, routine remediation actions may have significant impacts on the component durability.

 In this paper, we propose an Integrated Quality Management Framework to address the durability issues due to the remedial actions following the construction deficiencies. The approach depends on identifying and categorizing the construction deficiencies that have no impact, moderate and significant impact on the durability. Categorization of the remedial actions on this basis would inform the consideration of warranty, maintenance costs, and risk transfer associated with each construction deficiency. This would improve the ability to manage the infrastructure durability either through the selection of alternative remedial actions or design changes to avoid such construction deficiencies.